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Abstract. Cellular automata are discrete dynamical systems that are
widely used to model natural systems. Classically they are run with
perfect synchrony ; i.e., the local rule is applied to each cell at each time
step. A possible modification of the updating scheme consists in applying
the rule with a fixed probability, called the synchrony rate. It has been
shown in a previous work that varying the synchrony rate continuously
could produce a discontinuity in the behaviour of the cellular automaton.
This works aims at investigating the nature of this change of behaviour
using intensive numerical simulations. We apply a two-step protocol to
show that the phenomenon is a phase transition whose critical exponents
are in good agreement with the predicted values of directed percolation.

1 Introduction

The research described in this article is motivated by the need to address a
general question raised in the modelling activity: “Does a given model keep its
behaviour when it is submitted to a perturbation of its updating scheme ?”
Of course, this question is too wide to be tackled in all its generality and we
choose here to study it in the more narrow context of cellular automata, taking
asynchronism as a means of perturbation.

In its classical paradigm, a cellular automaton consists of a collection of finite
state automata arranged on a regular grid, which update their state at each
time step according to a local rule. Using this formalism, we obtain discrete
dynamical systems that are used for modelling spatially extended phenomena
governed by a local rule. Such phenomena are to be found in various fields
such as physics (e.g., atoms interaction in a crystal), chemistry (e.g., non-stirred
reaction-diffusion), biology (e.g., virus spreading), etc. (see [1], chap. 1 for a
review). The method used for assessing the validity of a model generally consists
in comparing the output produced by the model to some experimental data.
We claim that this step is of course necessary but that it is not sufficient: one
may also need to examine to which extent the behaviour observed is due to the
implicit hypotheses of the model, namely: discretisation of state, regularity of
the grid, perfect synchrony of the transitions.

The latter problem was at first addressed in [14] by means of simulation, the
evaluation of the change in behaviour remaining qualitative. Other experimental

S. El Yacoubi, B. Chopard, and S. Bandini (Eds.): ACRI 2006, LNCS 4173, pp. 667–675, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



668 N. Fatès

works such as [3,17,15] followed, showing that the update scheme was indeed a
key point to study. On the theoretical side, very few results have been obtained
so far: the independence on the “update history” was shown undecidable in [9],
existence of stationary distributions was studied in [12] and a first classification
based on the convergence time was proposed in [7] and extended in [8]. In the
work [6], we experimentally showed that the perturbation of the updating scheme
of elementary cellular automata may alter significantly the behaviour of some
rules while other rules remained robust. We used one of the simplest means of
introducing asynchronism in the dynamics: instead of applying the rule simulta-
neously to all the cells, each cell has a given probability α, called the synchrony
rate to apply the rule.

This study showed that, among other phenomena, for seven elementary cellu-
lar automata, there exists a particular value of the synchrony rate αc for which a
small change of value produces an abrupt change of behaviour. It was then con-
jectured that this brutal variation could be explained by the existence of a phase
transition, more precisely that the universality class1 of the phase transition was
directed percolation (DP). We wish to emphasize that this hypothesis was mainly
supported by the observation of the space-time diagrams patterns produced near
criticality. Previous identification of directed percolation was obtained in other
contexts such that probabilistic cellular automata [5] or synchronisation of two
copies of cellular automata [10,16]. To our knowledge, the only example of di-
rected percolation induced by asynchronism was given by Blok and Bergersen
for the famous Game of Life [4].

2 Description of the Model

Let a ring of n cells be indexed by L = Z/nZ, a configuration is word on {0, 1}L.
The density of a configuration x is the ratio of cells in state 1. An elementary
cellular automaton (ECA) is described by a function f : {0, 1}3 → {0, 1} called
the local rule. Each ECA is indexed according to the usual notation [18].

Using the stochastic asynchronous updating scheme, the local rule f allows
to define a probabilistic global rule F which operates on the random variables
xt according to x0 = x with probability 1 and xt+1 = F (xt) such that:

∀i ∈ L, xt+1
i =

{
f(xt

i−1, x
t
i, x

t
i+1) with probability α

xt
i with probability 1 − α

By taking α = 1, we fall back on the classical synchronous case and as α is
decreased, the updtae rule becomes asynchronous while the effect of an update
remains unchanged.

The rules that were experimentally detected as showing a brutal change of
behaviour for a non-trivial value of α are ECA 6,18,26,50,58,106,146 (only “min-
imal representative rules” are considered). Figure 1 shows how the variation of
1 Universality class is a term from statistical physics that describes all the different

phenomena that obey the same laws near criticality (e.g., see [11] for a review on
the directed percolation universality class).
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Fig. 1. Two types of phase transitions observed with ECA. (a) The upper three lines
show the space time diagrams for ECA 50 (left) and ECA 6 (right). Synchrony rate
is decreased, from α = 0.75 (up) to α = 0.25 (down). Time goes from left to right;
the time factor is rescaled by a factor 1/α (i.e., for α = 0.25 only time steps that are
multiples of 4 are displayed). (b) Lower line : asymptotic density as a function of the
synchrony rate ; it is estimated by the computation of the average density obtained on
a sampling time S = 103, after a transient time T = 105 has elapsed.
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synchrony rate affects the behaviour of three such rules. We see that two different
behaviours are exhibited:

(a) The system quickly converges to a frozen fixed-point configuration where all
the cells are in state 0, we say that we are in the subcritical phase.

(b) The system evolves to a steady state characterised by an evolving branching-
annhilating pattern, we call this steady state the supercritical phase.

The separation between the two phases can be seen on Fig.1.b: the phase
transition is materialised by the change in the average density (see legend). If
the directed percolation hypothesis is valid, then theory and observations [11]
predict that for an infinite lattice size system, the temporal evolution of the
density dα(t) obeys the following laws:

– for the critical value the density decreases as a power law: dαc(t) ∼ t−δ ;
– for the supercritical phase α > αc, the system converges to a stationary

state characterised by a non-zero asymptotic density d∞(α). Near the critical
point, the asymptotic density follows a power law: d∞(α) ∼ (α − αc)β .

We emphasize that the critical exponents δ = 0.1595 and β = 0.2765 are
known only experimentally (the values are given here with four digits, see [11]
for better precision). They are valid for an initial random configuration where
each cell has an equal probability to be in state 0 or 1.

Naturally, these predictions only hold for infinite systems ; as simulation re-
quires finite lattices, we are bound to introduce finite-size effects. In the following
section, we explain our protocol for measuring these exponents and limiting ex-
perimental errors.

3 Protocol

The measure of DP-critical exponents is a delicate operation that generally re-
quires large amount of computation time. The main difficulty resides in avoiding
systematic errors when obtaining statistical data near the transition point. For
example, it happened that authors were mislead by their measures and con-
cluded that a phase transition phenomenon was not in the DP universality class
[13], which was later proved wrong [10].

In order to limit the influence of systematic errors, we use the two-step pro-
tocol that was used by Grassberger in [10]:

– We measure the critical synchrony rate αc by varying α until we reach the
best approximation of a power-law decay for the density. This first experi-
ment also allows to measure the critical exponent δ.

– We measure the asymptotic density d∞ as a function of α and then fit a
power-law in order to calculate β.

Note that these two steps are not independent since the second operation uses
the previously computed value of αc.
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Fig. 2. ECA 50 : Determination of of the critical synchrony rate αc using d = f(t) for
different values of α. Each curve shows the average obtained with on 100 runs. (a) α is
varied by increments of 10−3, for 2.105 simulation steps. (b) α is varied by increments
of 10−4, for 106 simulation steps. The straight line has slope −δDP = 0.1595 and is
plotted for reference.
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In all the following experiments, we fixed the lattice size to n = 104 (as in [10]),
verifying that the variations of the results when the system size was decreased
to n = 5000 was less than the precision of measures. However, a more detailed
protocol would require to do a scaling analysis, i.e., to compute the limits of
each measure as n goes to infinity.

3.1 Determination of δ

Figure 3 shows the temporal decay of the density for ECA 50 as α is varied by
10−3 steps from 0.626 to 0.630. The curves are obtained by averaging the data
on 100 runs of time T = 2.105. We see that as α is increased, the curve in a
log-log plot transforms from a concav function to a convex function ; the best
linearity is obtained for α = 0.628. As predicted, we see that the curve’s slope
in its linear part is close to δDP = 0.1595.

In order to improve the precision on the measure of αc, we repeated the
previous experiment by varying α with a step of 10−4 using a sampling time
T = 106. This operation is the most time-consuming as this computation requires
more than 1014 applications of the local rule. The convexity of the curves was
determined numerically, by plotting the local slope (see [11]) as a function of
time according to:

δeff(t) =
log d(t) − log d(t/m)

log t − log(t/m)
=

log [d(t)/d(t/m)]
log m

with m varying between 4 and 10 (heuristic criterion).
The values of α for which the best linearity was obtained are displayed in

Table 1. The value of the slope, δ, is given in the third column of the table for
comparison with δDP. We took t ∈ [2000, 200000] as a fit interval to limit the
influence of the transient time and the deviation from a power-law decay.

We wish to call the reader attention on the fact that we cannot identify the
precision of this fit as the precision on the measure on δ. Indeed, as we are
necessarily slightly subcritical or supecritical, the curve d(t) eventually deviates
from a power-law. To get an estimation on the precision on δ, we used the
following heuristic method: if we bound the αc according to α1 < αc < α2, we
use the quantity Eδ = |δ(α1) − δ(α2)| as an estimator of the precision on δ.
The results displayed in Table 1 show that the computed values of δ and Eδ

are compatible with the predicted value δDP. It is interesting to notice that a
variation on α of the order of 10−4 produces a relative variation of 10% on the
value of δ. This explains why αc has to be measured with high precision.

3.2 Determination of β

The second part of the experiments consists in measuring the critical exponent
β using the values of the asymptotic density as a function of α. To estimate
this asymptotic density, it is necessary to adjust the sampling time as α varies.
Indeed, as α approaches αc, the asymptotic density vanishes as :
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Fig. 3. ECA 50: Determination of the critical exponent β using the time decay prop-
erties. Each point is obtained according to using a particular sampling time (see text).
The curve have slope β50 = 0.2688± 0.0107. Note that both x and y axis are displayed
in logarithmic scale.

d∞(α) = (α − αc)β , and the increase of the time needed to reach this density is
thus exponential: this phenomenon, known as critical slowing down (e.g., [11]),
limits the precision on the measure of the asymptotic density d∞.

The quantity Δα = α − αc was varied according to an exponential increment
from 0.0032 to 0.128. This interval is determined by the following trade-off: the
computer time limits lower values of Δα (critical slowing down) and for higher
values of Δα the system “saturates” and no longer follow a power-law. The
deviation from the power law is a phenomenon that is predicted by theory and
that can be studied for its own interest. However, we prefer here to restrict our
measures to the linear part of the curve.

Sampling times were increased as Δα was decreased and the highest sampling
time T = 4.105 was used for Δα = 0.0032. The experiment was conducted for the
seven ECA and the calculated values are shown in Table 1. Again, the computed
values of β are in good agreement with the reference value βDP = 0.2765.

4 Discussion

The problem of determining how changes of behaviour were triggered by gradual
changes in the update rule were investigated by numerical simulations. The re-
sults show good evidence that the phenomenon observed for seven asynchronous
elementary cellular automata is a second order phase transition which belongs
to the directed percolation universality class.
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Table 1. Critical values α̃c for the seven ECA with DP ; the digit between parentheses
is uncertainty (in 10−4 units). Corresponding value of δ is given with an approximation
of the error on δ (see text). Critical exponent β calculated using the given value α̃c.

ECA α̃c δ(α̃c) Eδ β

6 0.2824 (4) 0.158 0.014 0.265 ± 0.015
18 0.7139 (2) 0.155 0.028 0.271 ± 0.009
26 0.4748 (2) 0.164 0.032 0.264 ± 0.015
50 0.6282 (2) 0.159 0.024 0.269 ± 0.011
58 0.3400 (2) 0.162 0.022 0.270 ± 0.017
106 0.8144 (4) 0.155 0.023 0.273 ± 0.048
146 0.6751 (2) 0.163 0.027 0.259 ± 0.021

The observation of the synchronous behaviour of the seven ECA studied in-
dicate that there is certainly no straightforward relation with the existing clas-
sifications. For example, ECA 6, 50 and 58 are “periodic” (or Wolfram class II)
rules while ECA 18, 26, 106 and 146 are “chaotic” (or Wolfram class III) rules.
This indicates that at criticality, cell-scale details of cellular automata become
irrelevant while some global scale-free behaviour governs its evolution.

These result may also further confirm a famous conjecture by Janssen and
Grassberger (see [11] for a short presentation) that states that a model should
belong to the DP universality class if it satisfies the following criteria:

– uniqueness of absorbing state (the all-zero state in our case),
– the possibility to characterise the phase transition by a positive order para-

meter (the density in our case),
– the definition of dynamics by short-range process (true by definition of CA),
– and the absence of additional symmetries (e.g., state symmetry) or quenched

randomness (true for all of the seven ECA considered).

This last condition is essential since ECA 178, which is a rule symmetric by
operation of left/right and 0/1 exchanging, was also detected to have a phase
transition but was not found into the DP universality class.

The most challenging question now consists in explaining why some ECA
show phase transitions while other have a smooth behaviour. A possibility of
investigation would be to examine how the dynamics of asynchronous CA can
be mapped with other well-studied phenomena such as synchronisation of con-
figurations [10] or Domany-Kinzel probabilistic CA [5]. However, such a reduc-
tion does not appear simple since ECA 6 has an “inversed” phase transition:
the subcritical (frozen) state is reached by the increase of the synchrony rate.
Another interesting problem is to find examples of such phase transitions in
nature. For example, this mechanism could help explaining the trigger of the
self-organisation phase in cellular societies [2,6].
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