

Computer science

cell *i* is updated

 $\alpha = 0.50$

They are constituted of cells arranged linearly, each cell can be in two states symbolized by 0 and 1. In the infinite case, the cells are located on the bi-infinite line \mathbf{Z} . In the finite case considered here, we arrange them in a ring $\mathbf{Z}/n\mathbf{Z}$.

Elementary Cellular Automata (ECA) are discrete dynamical systems.

The state of the cell is represented by a configuration $x^t = (x_t^1) \in Q^{(Z/nZ)}$.

Classical ECA: In the classical synchronous regime, at each time step *t*, each according to a local function $f: \{0,1\}^3 \rightarrow \{0,1\}$.

probability α to be updated : for all $i{\in~}{\mathbf Z}/n{\mathbf Z}$ $x_i^{t+1} = f(x_{i+1}^t, x_i^t, x_{i+1}^{t-1})$

......

 $\mathbf{x}_i^{t+1} = \mathbf{x}_i^t$

 $\alpha = 1$

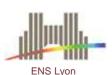
Asynchronous ECA: In the asynchronous regime, at each time step t, each cell i has a

with probability α

with probability 1-a

1000

Phase transitions in cellular automata : From computer science to statistical physics & back.



Loria - BP 239 - 54506 Vandœuvre-lès-Nancy - FRANCE nazim.fates@loria.fr Nazim Fatès

Statistical physics

The percolation phenomenon is a well-studied model that shows phase transitions. In this model, sites are ed on a diagonal square lattice. A link between two sites can be in two states : open (blocking) or closed (porous).

In isotropic percolation, the links between two neighbouring sites are closed with probability p and open with probability I-p. A cluster is a maximal set of connected sites.

From a given site, what is the probability G(p) to obtain an "infinite cluster"? There exists a critical probability $p_{c} = \frac{1}{2}$, such that : G(p) = 0 for $p < p_c$ (dry phase), and G(p) > 0 for $p > p_c$ (wet phase).

Directed percolation is an anisotropic variant of percolation where the links between two sites are oriented according to a particular direction. It can be interpreted as a dynamical process where and the x-axis is space and the y-axis represents time.

The size of the clusters also diverge for a critical probability p_c . However, $p_c[DP] > p_c[IP]$.

directed bond percolation

Illustration of percolation phenomena courtesy of H. Hinrichsen [2]

Around criticality, experiments and theory predict that the density d(t) (average number of wet sites) evolves

For the critical phase $p = p_c$, the decrease follows : $d(t) \sim t^{\delta}$ where $\delta = -0.1595...$ is known experimentally.

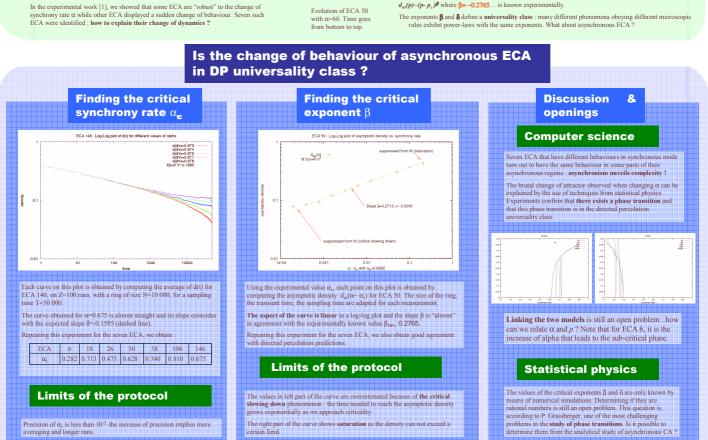
For the subcritical phase $p < p_{cr}$ the density vanishes more rapidly $d(t) < t^{\delta}$

For the supercritical phase $p > p_{c}$ the density stabilizes to an asymptotic value $d_{as}(p)$.

(2) The asymptotic density $d_{as}(p)$ diverges around p_c as

 $d_{as}(p) \sim (p - p_c)^{\beta}$ where $\beta = -0.2765...$ is known experimentally.

The exponents β and δ define a **universality class** : many different phenomena obeying different microscopic rules exhibit power-laws with the same exponents. What about asynchronous ECA ?



Evolution of ECA 50

[1] N. Fatès and M. Morvan, An Experimental Study of Robustness to Asynchronism for Elementary Cellular Automata, Complex Systems, Volume 16, 2005. N.Fatès, Robustesse de la dynamique des systèmes discrets : le cas de l'asynchronisme dans les automates cellulaires, ENS Lyon thesis Nº 04ENSL0298, 2004. [3] H. Hinrichsen, Nonequilibrium Critical Phenomena and Phase Transitions into Absorbing States, Advances in Physics, Vol. 49, 2000.

Thanks to : A.Ballier (ENS Lyon), A. Boumaza (LORIA), W.Bouamama, M. Morvan (ENS Lyon), B. Scherrer (LORIA)